The method of logical relations assigns a relational interpretation to types that expresses operational invariants satisfied by all terms of a type. The method is widely used in the study of typed languages, for example to establish contextual equivalences of terms. The chief difficulty in using logical relations is to establish the existence of a suitable relational interpretation. We extend work of Pitts and Birkedal and Harper on constructing relational interpretations of types to polymorphism and recursive types, and apply it to establish parametricity and representation independence properties in a purely operational setting. We argue that, once the existence of a relational interpretation has been established, it is straightforward to...
The problem of typing polymorphic recursion (i.e. recursive function definitions rec{x = e} where di...
Reynolds’ notion of relational parametricity has been extremely influential and well studied for pol...
AbstractA polymorphic function is parametric if its behavior does not depend on the type at which it...
AbstractThe method of logical relations assigns a relational interpretation to types that expresses ...
The method of logical relations assigns a relational interpretation to types that expresses operatio...
AbstractRelational interpretations of type systems are useful for establishing properties of program...
This paper presents a novel syntactic logical relation for a polymorphic linear lambda-calculus that...
We present a possible world semantics for a call-by-value higher-order programming language with imp...
. Higher-order programming languages, such as ML, permit a flexible programming style by using compi...
AbstractWe consider a type system where types are labeled, regular trees. Equipped with a type order...
We present a realizability model for a call-by-value, higher-order programming language with paramet...
Abstract. We define and study parametric polymorphism for a type system with recursive, product, uni...
This paper presents a novel syntactic logical relation for a polymorphic linear lambda-calculus that...
We present a local relational reasoning method for reasoning about contextual equivalence of express...
We present a method for providing semantic interpretations for languages with a type system featurin...
The problem of typing polymorphic recursion (i.e. recursive function definitions rec{x = e} where di...
Reynolds’ notion of relational parametricity has been extremely influential and well studied for pol...
AbstractA polymorphic function is parametric if its behavior does not depend on the type at which it...
AbstractThe method of logical relations assigns a relational interpretation to types that expresses ...
The method of logical relations assigns a relational interpretation to types that expresses operatio...
AbstractRelational interpretations of type systems are useful for establishing properties of program...
This paper presents a novel syntactic logical relation for a polymorphic linear lambda-calculus that...
We present a possible world semantics for a call-by-value higher-order programming language with imp...
. Higher-order programming languages, such as ML, permit a flexible programming style by using compi...
AbstractWe consider a type system where types are labeled, regular trees. Equipped with a type order...
We present a realizability model for a call-by-value, higher-order programming language with paramet...
Abstract. We define and study parametric polymorphism for a type system with recursive, product, uni...
This paper presents a novel syntactic logical relation for a polymorphic linear lambda-calculus that...
We present a local relational reasoning method for reasoning about contextual equivalence of express...
We present a method for providing semantic interpretations for languages with a type system featurin...
The problem of typing polymorphic recursion (i.e. recursive function definitions rec{x = e} where di...
Reynolds’ notion of relational parametricity has been extremely influential and well studied for pol...
AbstractA polymorphic function is parametric if its behavior does not depend on the type at which it...