We combine mixed-integer linear programming (MILP) and constraint programming (CP) to solve an important class of planning and scheduling problems. Tasks are allocated to facilities using MILP and scheduled using CP, and the two are linked via logic-based Benders decomposition. Tasks assigned to a facility may run in parallel subject to resource constraints (cumulative scheduling). We solve problems in which the objective is to minimize cost, makespan, or total tardiness. We obtain significant computational speedups, of several orders of magnitude for the first two objectives, relative to the state of the art in both MILP and CP. We also obtain better solutions and bounds for problems than cannot be solved to optimality
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between tw...
International audienceIn this paper, we address the preemptive flexible job-shop scheduling problem ...
22 pagesInternational audienceWe propose exact hybrid methods based on integer linear programming an...
We combine mixed integer linear programming (MILP) and constraint programming (CP) to solve an impor...
We combine mixed integer linear programming (MILP) and constraint programming (CP) to solve planning...
Logic-based Benders decomposition (LBBD) has improved the state of the art for solving a variety of ...
We combine mixed integer linear programming (MILP) and constraint programming (CP) to solve planning...
Abstract. We combine mixed integer linear programming (MILP) and constraint programming (CP) to mini...
Logic-based Benders decomposition can combine mixed integer programming and constraint programming t...
We combine mixed integer linear programming (MILP) and constraint programming (CP) to minimize tardi...
Logic-based Benders decomposition (LBBD) is a strategy for solving discrete optimisation problems. I...
This chapter describes constraint-based scheduling as the discipline that studies how to solve sched...
The struggle to model and solve Combinatorial Optimization Problems (COPs) has challenged the develo...
This dissertation analyzes three scheduling problems motivated by real life situa-tions. In many man...
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between tw...
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between tw...
International audienceIn this paper, we address the preemptive flexible job-shop scheduling problem ...
22 pagesInternational audienceWe propose exact hybrid methods based on integer linear programming an...
We combine mixed integer linear programming (MILP) and constraint programming (CP) to solve an impor...
We combine mixed integer linear programming (MILP) and constraint programming (CP) to solve planning...
Logic-based Benders decomposition (LBBD) has improved the state of the art for solving a variety of ...
We combine mixed integer linear programming (MILP) and constraint programming (CP) to solve planning...
Abstract. We combine mixed integer linear programming (MILP) and constraint programming (CP) to mini...
Logic-based Benders decomposition can combine mixed integer programming and constraint programming t...
We combine mixed integer linear programming (MILP) and constraint programming (CP) to minimize tardi...
Logic-based Benders decomposition (LBBD) is a strategy for solving discrete optimisation problems. I...
This chapter describes constraint-based scheduling as the discipline that studies how to solve sched...
The struggle to model and solve Combinatorial Optimization Problems (COPs) has challenged the develo...
This dissertation analyzes three scheduling problems motivated by real life situa-tions. In many man...
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between tw...
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between tw...
International audienceIn this paper, we address the preemptive flexible job-shop scheduling problem ...
22 pagesInternational audienceWe propose exact hybrid methods based on integer linear programming an...