In this thesis we have tried to figure out some algebraic aspects of noncommutative tori, aiming at generalizing them to arbitrary noncommutative spaces. In the second section all relevant definitions, some examples and motivations have been provided. In the third section we look at the example of noncommutative tori and see how they can be related to similar objects called noncommutative elliptic curves. We extract a suitably well-behaved subcategory of the category of holomorphic bundles over noncommutative tori. This category turns out to admit a Tannakian structure with Z+ΘZ as the fundamental group. The key to this construction is an equivariant version of the classical Riemann–Hilbert correspondence. The aim was to construct homotopy ...