In Part 1, we develop some aspects of the theory of derivators, pointed derivators, and stable derivators. As a main result, we show that the values of a stable derivator can be canonically endowed with the structure of a triangulated category. Moreover, the functors belonging to the stable derivator can be turned into exact functors with respect to these triangulated structures. Along the way, we give a simplification of the axioms of a pointed derivator and a reformulation of the base change axiom in terms of Grothendieck (op)fibration. Furthermore, we have a new proof that a combinatorial model category has an underlying derivator. In Part 2, we develop the theory of monoidal derivators and the related notions of derivators being tensore...