We state some equiconvergence results between Bochner Riesz means of expansions in eigenfunctions of suitable Sturm Liouville operators. Then we determine the Hausdorff dimension of the divergence set of Bochner Riesz means of radial functions in Sobolev classes on Euclidean and non Euclidean spaces
International audienceThis note is dedicated to a few questions related to the divergence equation w...
AbstractQuestions of mean convergence of classical orthogonal expansions and rates of divergence of ...
Considering regular mappings of Euclidean spaces, we study the distortion of the Hausdorff dimension...
We state some equiconvergence results between Bochner Riesz means of expansions in eigenfunctions of...
We prove equiconvergence of the Bochner-Riesz means of the Fourier series and integral of distributi...
We costruct functions in $H_{w}^{1}$ ($w ∈ A_{1}$) whose Fourier integral expansions are almost ever...
We combine the Cantor-Lebesgue Theorem and Uniform Boundedness Principle to prove a divergence resul...
In this paper we prove precise equiconvergence relation between index of the Bochner-Riesz means of ...
Abstract. We prove an equisummability result for the Fourier expansions and Hermite expansions as we...
Let Ω be an arbitrary bounded domain of Rn. We study the right invertibility of the divergence on Ω ...
Some of the divergence conditions for Riesz means of Rademacher functions have been determined. A co...
In this paper we prove a precise equiconvergence relation between index of the Bochner-Riesz means ...
This book mainly deals with the Bochner-Riesz means of multiple Fourier integral and series on Eucli...
ABSTRACT. Some versions of the divergence theorem are proved, for maps defined in suitable sets of I...
Let $G$ be a connected, simply connected, compact semisimple Lie group of dimension $n$. It has been...
International audienceThis note is dedicated to a few questions related to the divergence equation w...
AbstractQuestions of mean convergence of classical orthogonal expansions and rates of divergence of ...
Considering regular mappings of Euclidean spaces, we study the distortion of the Hausdorff dimension...
We state some equiconvergence results between Bochner Riesz means of expansions in eigenfunctions of...
We prove equiconvergence of the Bochner-Riesz means of the Fourier series and integral of distributi...
We costruct functions in $H_{w}^{1}$ ($w ∈ A_{1}$) whose Fourier integral expansions are almost ever...
We combine the Cantor-Lebesgue Theorem and Uniform Boundedness Principle to prove a divergence resul...
In this paper we prove precise equiconvergence relation between index of the Bochner-Riesz means of ...
Abstract. We prove an equisummability result for the Fourier expansions and Hermite expansions as we...
Let Ω be an arbitrary bounded domain of Rn. We study the right invertibility of the divergence on Ω ...
Some of the divergence conditions for Riesz means of Rademacher functions have been determined. A co...
In this paper we prove a precise equiconvergence relation between index of the Bochner-Riesz means ...
This book mainly deals with the Bochner-Riesz means of multiple Fourier integral and series on Eucli...
ABSTRACT. Some versions of the divergence theorem are proved, for maps defined in suitable sets of I...
Let $G$ be a connected, simply connected, compact semisimple Lie group of dimension $n$. It has been...
International audienceThis note is dedicated to a few questions related to the divergence equation w...
AbstractQuestions of mean convergence of classical orthogonal expansions and rates of divergence of ...
Considering regular mappings of Euclidean spaces, we study the distortion of the Hausdorff dimension...