This work presents a wearable EMG gesture recognition system based on the hyperdimensional (HD) computing paradigm, running on a programmable Parallel Ultra-Low-Power (PULP) platform. The processing chain includes efficient on-chip training, which leads to a fully embedded implementation with no need to perform any offline training on a personal computer. The proposed solution has been tested on 10 subjects in a typical gesture recognition scenario achieving 85% average accuracy on 11 gestures recognition, which is aligned with the State-Of-the-Art (SoA), with the unique capability of performing online learning. Furthermore, by virtue of the Hardware (HW) friendly algorithm and of the efficient PULP System-on-Chip (SoC) (Mr. Wolf) used for ...