Background: The appropriate resolution of a zone system is key to the development of any transport model, as well as other spatial analyses. The number and shape of zones directly impacts the effectiveness of any further modeling steps, with the trade-off between computation time and model accuracy being a particularly important consideration. Currently, zone systems are often designed by hand. The gradual rasterization zoning algorithm produces good empirical results by computationally generating raster cells of varying area, but similar population and employment.Methods: We address several limitations of the original algorithm in this paper. Firstly, the allocation of employment to raster cells is weighted by land use instead of by area p...