In this paper, we deal with several reoptimization variants of the Steiner tree problem in graphs obeying a sharpened β-triangle inequality. A reoptimization algorithm exploits the knowledge of an optimal solution to a problem instance for finding good solutions for a locally modified instance. We show that, in graphs satisfying a sharpened triangle inequality (and even in graphs where edge-costs are restricted to the values 1 and 1+ for an arbitrary small > 0), Steiner tree reoptimization still is NP-hard for several different types of local modifications, and even APX-hard for some of them.As for the upper bounds, for some local modifications, we design lineartime (1/2+β)-approximation algorithms, and even polynomial-time approximation sc...