We prove local well-posedness in regular spaces and a Beale–Kato–Majda blow-up criterion for a recently derived stochastic model of the 3D Euler fluid equation for incompressible flow. This model describes incompressible fluid motions whose Lagrangian particle paths follow a stochastic process with cylindrical noise and also satisfy Newton’s second law in every Lagrangian domain
UnrestrictedThis work collects three interrelated projects that develop rigorous mathematical tools ...
We investigate the Markov property and the continuity with respect to the initial conditions (strong...
This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at...
The present paper aims to establish the local well-posedness of Euler's fluid equations on geometric...
3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constant...
3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constant...
Abstract. In this paper we derive a representation of the deterministic 3-dimensional Navier-Stokes ...
Hofmanová M, Zhu R, Zhu X. On Ill- and Well-Posedness of Dissipative Martingale Solutions to Stochas...
We deal with the 3D inviscid Leray-α model. The well posedness for this problem is not known; by add...
AbstractWe establish the existence of a local smooth solution of the stochastic Euler equations in R...
We deal with the 3D inviscid Leray-\u3b1 model. The well posedness for this problem is not known; by...
We deal with the 3D inviscid Leray-alpha model. The well posedness for this problem is not known; by...
Abstract. In this paper we derive a probabilistic representation of the deter-ministic 3-dimensional...
We consider stochastic versions of Euler--Arnold equations using the infinite-dimensional geometric ...
This work is devoted to the study of non-Newtonian fluids of grade three on two-dimensional and thre...
UnrestrictedThis work collects three interrelated projects that develop rigorous mathematical tools ...
We investigate the Markov property and the continuity with respect to the initial conditions (strong...
This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at...
The present paper aims to establish the local well-posedness of Euler's fluid equations on geometric...
3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constant...
3D stochastic Euler equations with a special form of multiplicative noise are considered. A Constant...
Abstract. In this paper we derive a representation of the deterministic 3-dimensional Navier-Stokes ...
Hofmanová M, Zhu R, Zhu X. On Ill- and Well-Posedness of Dissipative Martingale Solutions to Stochas...
We deal with the 3D inviscid Leray-α model. The well posedness for this problem is not known; by add...
AbstractWe establish the existence of a local smooth solution of the stochastic Euler equations in R...
We deal with the 3D inviscid Leray-\u3b1 model. The well posedness for this problem is not known; by...
We deal with the 3D inviscid Leray-alpha model. The well posedness for this problem is not known; by...
Abstract. In this paper we derive a probabilistic representation of the deter-ministic 3-dimensional...
We consider stochastic versions of Euler--Arnold equations using the infinite-dimensional geometric ...
This work is devoted to the study of non-Newtonian fluids of grade three on two-dimensional and thre...
UnrestrictedThis work collects three interrelated projects that develop rigorous mathematical tools ...
We investigate the Markov property and the continuity with respect to the initial conditions (strong...
This dissertation is devoted to the equations of motion governing the evolution of a fluid or gas at...