Recommender systems, predictive models that provide lists of personalized suggestions, have become increasingly popular in many web-based businesses. By presenting potential items that may interest a user, these systems are able to better monetize and improve users’ satisfaction. In recent years, the most successful approaches rely on capturing what best define users and items in the form of latent vectors, a numeric representation that assumes all instances can be described by their respective affiliation towards a set of hidden features. However, recommendation methods based on latent features still face some realworld limitations. The data sparsity problem originates from the unprecedented variety of available items, making generated sug...