We revisit our earlier work on the representation of quantum systems as Chu spaces, and investigate the use of coalgebra as an alternative framework. On the one hand, coalgebras allow the dynamics of repeated measurement to be captured, and provide mathematical tools such as final coalgebras, bisimulation and coalgebraic logic. However, the standard coalgebraic framework does not accommodate contravariance, and is too rigid to allow physical symmetries to be represented. We introduce a fibrational structure on coalgebras in which contravariance is represented by indexing. We use this structure to give a universal semantics for quantum systems based on a final coalgebra construction. We characterize equality in this semantics as projective e...