This paper is a detailed report on a programme of direct numerical simulations of incompressible nonhehcal randomly forced magnetohydrodynamic (MHD) turbulence that are used to settle a long-standing issue in the turbulent dynamo theory and demonstrate that the fluctuation dynamo exists in the limit of large magnetic Reynolds number Rm ≫1 and small magnetic Prandtl number Pm ≪ 1. The dependence of the critical Rmc for dynamo versus the hydrodynamic Reynolds number Re is obtained for 1 ≲ Re ≲ 6700. In the limit Pm ≪ 1, Rmc is at most three times larger than for the previously well established dynamo at large and moderate Prandtl numbers: Rmc ≲ 200 for Re ≳ 6000 compared to Rmc ∼ 60 for Pm ≥ 1. The stability curve Rmc(Re) (and, it is argued, ...