We describe the motivation behind the recent formulation of a nonperturbative path integral for Lorentzian quantum gravity defined through Causal Dynamical Triangulations (CDT). In the case of two dimensions the model is analytically solvable, leading to a genuine continuum theory of quantum gravity whose ground state describes a two-dimensional "universe" completely governed by quantum fluctuations. One observes that two-dimensional Lorentzian and Euclidean quantum gravity are distinct. In the second part of the review we address the question of how to incorporate a sum over space-time topologies in the gravitational path integral. It is shown that, provided suitable causality restrictions are imposed on the path integral histories, there ...