We study percolation in the following random environment: let $Z$ be a Poisson process of constant intensity in the plane, and form the Voronoi tessellation of the plane with respect to $Z$. Colour each Voronoi cell black with probability $p$, independently of the other cells. We show that the critical probability is 1/2. More precisely, if $p>1/2$ then the union of the black cells contains an infinite component with probability 1, while if $p<1/2$ then the distribution of the size of the component of black cells containing a given point decays exponentially. These results are analogous to Kesten's results for bond percolation in the square lattice. The result corresponding to Harris' Theorem for bond percolation in the square lattice is ...