In this paper we develop a formal dynamic version of Chain Event Graphs (CEGs), a particularly expressive family of discrete graph- ical models. We demonstrate how this class links to semi-Markov models and provides a convenient generalization of the Dynamic Bayesian Network (DBN). In particular we develop a repeating time-slice Dynamic CEG providing a useful and simpler model in this family. We demonstrate how the Dynamic CEG’s graphical formulation exhibits asymmetric conditional independence statements and also how each model can be estimated in a closed form enabling fast model search over the class. The expressive power of this model class together with its estimation is illustrated throughout by a variety of examples that include the...