In this paper we consider Hamilton's Ricci flow on a 3-manifold with a metric of positive scalar curvature. We establish several a priori estimates for the Ricci flow which we believe are important in understanding possible singularities of the Ricci flow. For Ricci flow with initial metric of positive scalar curvature, we obtain a sharp estimate on the norm of the Ricci curvature in terms of the scalar curvature (which is not trivial even if the initial metric has non-negative Ricci curvature, a fact which is essential in Hamilton's estimates [R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255-306]), some L2-estimates for the gradients of the Ricci curvature, and finally the Harnack type estim...