We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding ...
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic eff...
This paper presents a detailed analysis of the effect of a large external noise on the propagation o...
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic eff...
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in ...
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in ...
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in ...
We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An a...
We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An a...
We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An a...
Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotem...
Inspired by applications, we consider reaction-diffusion equations on R that are stochastically forc...
We consider reaction-diffusion equations of KPP type in one spatial di-mension, perturbed by a Fishe...
A simple model is introduced that exhibits a noise-induced front propagation and where the noise ent...
Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotem...
Stochastic reaction-diffusion models can be analytically studied on complex networks using the linea...
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic eff...
This paper presents a detailed analysis of the effect of a large external noise on the propagation o...
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic eff...
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in ...
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in ...
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in ...
We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An a...
We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An a...
We study the dynamics of reaction-diffusion fronts under the influence of multiplicative noise. An a...
Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotem...
Inspired by applications, we consider reaction-diffusion equations on R that are stochastically forc...
We consider reaction-diffusion equations of KPP type in one spatial di-mension, perturbed by a Fishe...
A simple model is introduced that exhibits a noise-induced front propagation and where the noise ent...
Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotem...
Stochastic reaction-diffusion models can be analytically studied on complex networks using the linea...
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic eff...
This paper presents a detailed analysis of the effect of a large external noise on the propagation o...
Propagating fronts arising from bistable reaction-diffusion equations are a purely deterministic eff...