A polyhedron $P$ has the Integer Carath\'eodory Property if the following holds. For any positive integer $k$ and any integer vector $w$ in $kP$, there exist affinely independent integer vectors $x_1,\ldots,x_t$ in $P$ and positive integers $n_1,\ldots,n_t$ such that $n_1+\cdots+n_t=k$ and $w=n_1x_1+\cdots+n_tx_t$. In this paper we prove that if $P$ is a (poly)matroid base polytope or if $P$ is defined by a TU matrix, then $P$ and projections of $P$ satisfy the integer Carath\'eodory property
peer reviewedA polyhedron is box-integer if its intersection with any integer box {ℓ≤x≤u} is integer...
AbstractThis paper shows some useful properties of the adjacency structures of a class of combinator...
AbstractConsider the following question introduced by McMullen: Determine the largest integern=f(d) ...
A polyhedron $P$ has the Integer Carath\'eodory Property if the following holds. For any positive in...
AbstractA polyhedron P has the Integer Carathéodory Property if the following holds. For any positiv...
In this paper we investigate the number of integer points lying in dilations of lattice path matroid...
This thesis is a study of the faces of certain combinatorially defined polyhedra. In particular, we...
htmlabstractWe call a matrix $A$ nearly totally unimodular if it can be obtained from a totally unim...
We give an upper bound on the number of vertices of PI, the integer hull of a polyhedron P, in terms...
This paper extends results on the cardinality constrained matroid polytope presented in [Maurras, J....
SIGLEAvailable from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-2410...
Given a polyhedron P subset R n we write P I for the convex hull of the integral points in P. It is ...
The integer hull of a polyhedron is the convex hull of the integer points contained in it. We show t...
A subset of vertices of a graph is called a dominating set if every vertex of the graph which is not...
A 2010 result of Amini provides a way to extract information about the structure of the graph from t...
peer reviewedA polyhedron is box-integer if its intersection with any integer box {ℓ≤x≤u} is integer...
AbstractThis paper shows some useful properties of the adjacency structures of a class of combinator...
AbstractConsider the following question introduced by McMullen: Determine the largest integern=f(d) ...
A polyhedron $P$ has the Integer Carath\'eodory Property if the following holds. For any positive in...
AbstractA polyhedron P has the Integer Carathéodory Property if the following holds. For any positiv...
In this paper we investigate the number of integer points lying in dilations of lattice path matroid...
This thesis is a study of the faces of certain combinatorially defined polyhedra. In particular, we...
htmlabstractWe call a matrix $A$ nearly totally unimodular if it can be obtained from a totally unim...
We give an upper bound on the number of vertices of PI, the integer hull of a polyhedron P, in terms...
This paper extends results on the cardinality constrained matroid polytope presented in [Maurras, J....
SIGLEAvailable from Bibliothek des Instituts fuer Weltwirtschaft, ZBW, Duesternbrook Weg 120, D-2410...
Given a polyhedron P subset R n we write P I for the convex hull of the integral points in P. It is ...
The integer hull of a polyhedron is the convex hull of the integer points contained in it. We show t...
A subset of vertices of a graph is called a dominating set if every vertex of the graph which is not...
A 2010 result of Amini provides a way to extract information about the structure of the graph from t...
peer reviewedA polyhedron is box-integer if its intersection with any integer box {ℓ≤x≤u} is integer...
AbstractThis paper shows some useful properties of the adjacency structures of a class of combinator...
AbstractConsider the following question introduced by McMullen: Determine the largest integern=f(d) ...