Das erste Thema dieser Dissertation ist der Defekt projektiver Hyperflächen. Es scheint, dass Hyperflächen mit Defekt einen verhältnismäßig großen singulären Ort besitzen. Diese Aussage wird im ersten Kapitel der Dissertation präzisiert und für Hyperflächen mit beliebigen isolierten Singularitäten über einem Körper der Charakteristik null, sowie für gewisse Klassen von Hyperflächen in positiver Charakteristik bewiesen. Darüber hinaus lässt sich die Dichte von Hyperflächen ohne Defekt über einem endlichen Körper abschätzen. Schließlich wird gezeigt, dass eine nicht-faktorielle Hyperfläche der Dimension drei mit isolierten Singularitäten stets Defekt besitzt. Das zweite Kapitel der Dissertation behandelt Bertini-Sätze über endlichen Körper...