In dieser Arbeit untersuchen wir die Struktur von Gausschen Prozessen, die durch gewisse lineare Transformationen von zwei Gausschen Martingalen erzeugt werden. Die Klasse dieser Transformationen ist durch nanzmathematische Gleichgewichtsmodelle mit heterogener Information motiviert. In Kapital 2 bestimmen wir für solche Prozesse, die zunächst in einer erweiterten Filtrierung konstruiert werden, die kanonische Zerlegung als Semimartin-gale in ihrer eigenen Filtrierung. Die resultierende Drift wird durch Volterra-Kerne beschrieben. Insbesondere charakterisieren wir diejenigen Prozesse, die in ihrer eigenen Filtrierung eine Brownsche Bewegung bilden. In Kapital 3 konstruieren wir neue orthogonale Zerlegungen der Brownschen Filtrierungen. ...