Location information is crucial for the correct interpretation of data collected through wireless sensor networks (WSNs). The de facto system for wireless localization, Global Positioning System (GPS) does not work properly in indoor environment, thus researchers are thriving to find other localization schemes for indoor WSNs. The main goal of this work is to study and design three-dimensional (3D) wireless localization schemes for indoor applications. In this thesis, a new and accurate, efficient and cost-effective algorithm, called parametric loop division (PLD) has been proposed for localizing static nodes within a WSN. In the proposed technique, reference points can help to produce new parametric points by calculating the mid points an...