Convolutional neural networks (CNNs) have recently attracted considerable attention due to their outstanding accuracy in applications, such as image recognition and natural language processing. While one advantage of the CNNs over other types of neural networks is their reduced computational cost, faster execution is still desired for both training and inference. Since convolution operations pose most of the execution time, multiple algorithms were and are being developed with the aim of accelerating this type of operations. However, due to the wide range of convolution parameter configurations used in the CNNs and the possible data type representations, it is not straightforward to assess in advance which of the available algorithms will b...