This work presents the Transition-Aware Human Activity Recognition (TAHAR) system architecture for the recognition of physical activities using smartphones. It targets real-time classification with a collection of inertial sensors while addressing issues regarding the occurrence of transitions between activities and unknown activities to the learning algorithm. We propose two implementations of the architecture which differ in their prediction technique as they deal with transitions either by directly learning them or by considering them as unknown activities. This is accomplished by combining the probabilistic output of consecutive activity predictions of a Support Vector Machine (SVM) with a heuristic filtering approach. The architecture ...