Kolaitis and Kopparty have shown that for any first-order formula with parity quantifiers over the language of graphs, there is a family of multivariate polynomials of constant-degree that agree with the formula on all but a 2(-Omega(n))-fraction of the graphs with n vertices. The proof bounds the degree of the polynomials by a tower of exponentials whose height is the nesting depth of parity quantifiers in the formula. We show that this tower-type dependence is necessary. We build a family of formulas of depth q whose approximating polynomials must have degree bounded from below by a tower of exponentials of height proportional to q. Our proof has two main parts. First, we adapt and extend the results by Kolaitis and Kopparty that describe...