We study the degree of nonhomogeneous lattice ideals over arbitrary fields, and give formulas to compute the degree in terms of the torsion of certain factor groups of Z(s) and in terms of relative volumes of lattice polytopes. We also study primary decompositions of lattice ideals over an arbitrary field using the Eisenbud-Sturmfels theory of binomial ideals over algebraically closed fields. We then use these results to study certain families of integer matrices (positive critical binomial (PCB), generalized positive critical binomial (GPCB), critical binomial (CB), and generalized critical binomial (GCB) matrices) and the algebra of their corresponding matrix ideals. In particular, the family of GPCB matrices is shown to be closed under t...