Cache coherence protocols limit the scalability of multicore and manycore architectures and are responsible for an important amount of the power consumed in the chip. A good way to alleviate these problems is to introduce a local memory alongside the cache hierarchy, forming a hybrid memory system. Local memories are more power-efficient than caches and do not generate coherence traffic, but they suffer from poor programmability. When non-predictable memory access patterns are found, compilers do not succeed in generating code because of the incoherence between the two storages. This paper proposes a coherence protocol for hybrid memory systems that allows the compiler to generate code even in the presence of memory aliasing problems. Coher...