This paper proposes a unique hardware-software collaborative strategy to remove useless work at 16-bit data-width granularity. The underlying motivation is to design a low power execution platform by exploiting ‘narrow’ computations. The proposal uses a strictly narrow bit-wide microarchitecture (16-bit integer datapath), which realizes the goal of a low cost, low hardware complexity, low power execution engine. Software dynamically maps the 64-bit computations by translating them into an equivalent 16-bit instruction stream and optimizing them. In this paper, we propose an optimization technique, called Global Productiveness Propagation (GPP), which is a dynamic, profile-based optimization technique that infers the minimum required dat...