We present a method for the automatic adaption of the support size of meshfree basis functions in the context of the numerical approximation of boundary value problems stemming from a minimum principle. The method is based on a variational approach, and the central idea is that the variational principle selects both the discretized physical fields and the discretization parameters, here those defining the support size of each basis function. We consider local maximum-entropy approximation schemes, which exhibit smooth basis functions with respect to both space and the discretization parameters (the node location and the locality parameters). We illustrate by the Poisson, linear and non-linear elasticity problems the effectivity of the meth...