Curved spacetime theory of inhomogeneous Weyl materials

  • Liang, Long
  • Ojanen, Teemu
Publication date
October 2019
Publisher
American Physical Society (APS)
Journal
Physical Review Research

Abstract

We show how the universal low-energy properties of Weyl semimetals with spatially varying time-reversal (TR) or inversion (I) symmetry breaking are described in terms of chiral fermions experiencing curved-spacetime geometry and synthetic gauge fields. By employing Clifford representations and Schrieffer-Wolff transformations, we present a systematic derivation of an effective curved-space Weyl theory with rich geometric and gauge structure. To illustrate the utility of the formalism, we give a concrete prescription of how to fabricate nontrivial curved spacetimes and event horizons in topological insulators with magnetic textures. Our theory can also account for strain-induced effects, providing a powerful unified framework for studying an...

Extracted data

We use cookies to provide a better user experience.