| openaire: EC/H2020/745770/EU//SANDFECHA geometrically nonlinear finite element model is developed for the bending analysis of micropolar Timoshenko beams using the principle of virtual displacements and linear Lagrange interpolation functions. The nonlinearity enters the model via a nonlinear von Kármán strain term that allows the micropolar beam to undergo moderate rotations. The nonlinear micropolar Timoshenko beam is used as an equivalent single layer model to study four different lattice core sandwich beams. A two-scale energy method is used to derive the micropolar constitutive equations for web, hexagonal, Y-frame and corrugated core topologies. Various bending cases are studied numerically using the developed 1-D finite element mod...