S rostoucím množstvím shromažďovaných a ukládaných dat vzniká potřeba shlukovacích metod, které by se dokázaly vypořádat i s rozsáhlými datovými soubory. Proto se objevuje množství nových algoritmů, vycházejících jak ze statistických přístupů, tak i z oblasti strojového učení. Cílem této diplomové práce je stručně představit dostupné metody shlukové analýzy a zhodnotit jejich silné a slabé stránky při analýze velkých souborů. Obsahem teoretické části je shrnutí základních pojmů a principů, které jsou všem metodám společné, a popisu nejznámějších metod shlukové analýzy. Ten obsahuje stručné vysvětlení, na jakém principu fungují a jaké výhody nebo případné nedostatky můžeme při jejich použití očekávat. Praktická část práce je věnována vlastní...