We examine the branch structure of radial diffusion-limited aggregation (DLA) clusters for evidence of multifractality. The lacunarity of DLA clusters is measured and the generalized dimensions D(q) of their mass distribution is estimated using the sandbox method. We find that the global n-fold symmetry of the aggregates can induce anomalous scaling behavior into these measurements. However, negating the effects of this symmetry, standard scaling is recovered
Two-dimensional structures grown with Witten and Sander algorithm are investigated. We analyze clust...
Diffusion-limited aggregation (DLA) is a model for computer simulation of particle aggregation. It i...
In the present paper, patterns of diffusion-limited aggregation (DLA) grown on nonuniform substrates...
We examine the branch structure of radial diffusion-limited aggregation (DLA) clusters for evidence ...
The geometrical multifractality of diffusion-limited aggregation (DLA) clusters is investigated by e...
The multifractal spectrum f(alpha) characterizing the scaling properties of the growth probability o...
An improved algorithm has been used to simulate off-lattice diffusion-limited aggregation (DLA) in t...
In this work we study the fractal properties of diffusion-limited aggregation (DLA) clusters grown o...
We employ the recently introduced conformal iterative construction of Diffusion-Limited Aggregates (...
We describe a simple theory of diffusion-limited-aggregation cluster growth which relates the large-...
We study the fractal structure of Diffusion-Limited Aggregation (DLA) clusters on the square lattice...
Particle-cluster aggregation has been studied by computer simulation. It has been observed that the ...
Efficient algorithms have been used to grow large (4×106 site) diffusion-limited aggregation (DLA) c...
A new approach to the branching structure of diffusion-limited aggregation (DLA) clusters is propose...
Diffusion-limited cluster aggregation (DLCA) is a well established model for the formation of highly...
Two-dimensional structures grown with Witten and Sander algorithm are investigated. We analyze clust...
Diffusion-limited aggregation (DLA) is a model for computer simulation of particle aggregation. It i...
In the present paper, patterns of diffusion-limited aggregation (DLA) grown on nonuniform substrates...
We examine the branch structure of radial diffusion-limited aggregation (DLA) clusters for evidence ...
The geometrical multifractality of diffusion-limited aggregation (DLA) clusters is investigated by e...
The multifractal spectrum f(alpha) characterizing the scaling properties of the growth probability o...
An improved algorithm has been used to simulate off-lattice diffusion-limited aggregation (DLA) in t...
In this work we study the fractal properties of diffusion-limited aggregation (DLA) clusters grown o...
We employ the recently introduced conformal iterative construction of Diffusion-Limited Aggregates (...
We describe a simple theory of diffusion-limited-aggregation cluster growth which relates the large-...
We study the fractal structure of Diffusion-Limited Aggregation (DLA) clusters on the square lattice...
Particle-cluster aggregation has been studied by computer simulation. It has been observed that the ...
Efficient algorithms have been used to grow large (4×106 site) diffusion-limited aggregation (DLA) c...
A new approach to the branching structure of diffusion-limited aggregation (DLA) clusters is propose...
Diffusion-limited cluster aggregation (DLCA) is a well established model for the formation of highly...
Two-dimensional structures grown with Witten and Sander algorithm are investigated. We analyze clust...
Diffusion-limited aggregation (DLA) is a model for computer simulation of particle aggregation. It i...
In the present paper, patterns of diffusion-limited aggregation (DLA) grown on nonuniform substrates...