This publication is a propaedeutic monograph about Gauss-Bonnet theorems and Atiyah-Singer indextheorems (ASI). Prerequisites are advanced undergraduate level in mathematical physics and some interest and time. Topics are the development of the notions of curvature and topological invariants through the ages and their application to physics. The beginnings in this field were given by Euklid, Archimedes, Harriot, Girard, Newton, Frenet-Serret. Next we come to Euler with his topological invariant 'Euler charcteristic', Gauss & Bonnet with their theory of 2-dimensional surfaces, Riemann with his 'Differential Geometry' and Einstein-Cartan with gravity based on curvature + torsion (ECSK)'. Then the story goes on with 'Homotopy', 'Simplicial...