Nano-sized (~10–15 nm) tantalate pyrochlores KxLnyTa2O7-v (Ln = Gd, Y, and Lu) were irradiated with 1 MeV Kr2+ beams at different temperatures and their radiation response behaviors were studied by in situ transmission electron microscopy observations. All of these nano-sized KxLnyTa2O7-v pyrochlores are sensitive to radiation-induced amorphization with low-critical doses (~0.12 dpa) at room temperature and high-critical amorphization temperatures above 1160 K. The K+ plays a key role in determining the radiation response of tantalate pyrochlores, in which the K+-rich KLuTa2O7 displays greater amorphization susceptibility than K0.8GdTa2O6.9 and K0.8YTa2O6.9 with lower K+ occupancy at the A-site. The reduced amorphization tolerance of the co...