The notion of weighted centers is essential in V-space interior-point algorithms for linear programming. Although there were some successes in generalizing this notion to semidefinite programming via weighted center equations, we still do not have a generalization that preserves two important properties—(1) each choice of weights uniquely determines a pair of primal-dual weighted centers, and (2) the set of all primal-dual weighted centers completely fills up the relative interior of the primal-dual feasible region. This paper presents a new notion of weighted centers for semidefinite programming that possesses both uniqueness and completeness. Furthermore, it is shown that under strict complementarity, these weighted centers converg...