The main objective of this thesis is to design a truly exact and optimal perfect absorbing layer (PAL) method for domain truncation of the two-dimensional Helmholtz equation in an unbounded domain with bounded scatterers. This PAL is based on a complex compression coordinate transformation and a judicious substitution of the unknown field in the artificial layer. Compared with existing perfectly matched layer (PML) methods, the distinctive features of this technique lie in that (i) it is truly exact in the sense that the PAL-solution is identical to the original solution in the bounded domain enclosed by the truncation layer; (ii) with the substitution, the PAL-equation is free of singularity and the substituted unknown field ...
The perfectly matched layer (PML) is a perfectly non-reflecting layer that simulates the absorption ...
Abstract. In this paper, we study the spectrum of the operator which results when the Perfectly Matc...
AbstractIn this paper, we present an optimal 25-point finite difference scheme for solving the Helmh...
In this paper, we design a truly exact perfect absorbing layer (PAL) for domain truncation of the tw...
This paper presents a parameter-free perfectly matched layer (PML) method for the finite-element-bas...
International audienceIn this article we discuss different techniques to solve numerically wave prop...
Abstract. A new construction of an absorbing boundary condition for indefinite Helmholtz problems on...
Abstract. The aim of this paper is to introduce an “exact ” bounded perfectly matched layer (PML) fo...
The presence of wave motion is the defining feature in many fields of application,such as electro-ma...
A new construction of an absorbing boundary condition for indefinite Helmholtz problems on unbounde...
Absorbing layers are sometimes required to be impractically thick in order to offer an accurate appr...
As an absorbing boundary in infinite domain problems, the perfectly matched layer (PML) is introduce...
We study the Helmholtz equation with a Sommerfeld radiation condition in an unbounded domain. We pro...
AbstractIn this paper, we study the spectrum of the operator which results when the Perfectly Matche...
The Perfectly Matched Layer (PML) has become a widespread technique for pre-venting reflections from...
The perfectly matched layer (PML) is a perfectly non-reflecting layer that simulates the absorption ...
Abstract. In this paper, we study the spectrum of the operator which results when the Perfectly Matc...
AbstractIn this paper, we present an optimal 25-point finite difference scheme for solving the Helmh...
In this paper, we design a truly exact perfect absorbing layer (PAL) for domain truncation of the tw...
This paper presents a parameter-free perfectly matched layer (PML) method for the finite-element-bas...
International audienceIn this article we discuss different techniques to solve numerically wave prop...
Abstract. A new construction of an absorbing boundary condition for indefinite Helmholtz problems on...
Abstract. The aim of this paper is to introduce an “exact ” bounded perfectly matched layer (PML) fo...
The presence of wave motion is the defining feature in many fields of application,such as electro-ma...
A new construction of an absorbing boundary condition for indefinite Helmholtz problems on unbounde...
Absorbing layers are sometimes required to be impractically thick in order to offer an accurate appr...
As an absorbing boundary in infinite domain problems, the perfectly matched layer (PML) is introduce...
We study the Helmholtz equation with a Sommerfeld radiation condition in an unbounded domain. We pro...
AbstractIn this paper, we study the spectrum of the operator which results when the Perfectly Matche...
The Perfectly Matched Layer (PML) has become a widespread technique for pre-venting reflections from...
The perfectly matched layer (PML) is a perfectly non-reflecting layer that simulates the absorption ...
Abstract. In this paper, we study the spectrum of the operator which results when the Perfectly Matc...
AbstractIn this paper, we present an optimal 25-point finite difference scheme for solving the Helmh...