The advent of third-generation synchrotron radiation sources and X-ray free-electron lasers has opened up the opportunity to perform quantum optical experiments with high-energy X-rays. The prime atomic system for experiments in this energy range is the strongly nuclear resonant 57Fe Mössbauer isotope. Experiments have included measurements of the collective Lamb shift1, observation of electromagnetically induced transparency2, subluminal propagation of X-rays3, 6 and spontaneously generated coherences4, 5, 7. In these experiments, however, the nuclei were only weakly coupled to the light field. Collective strong coupling of nuclei and X-rays, which is desirable for many quantum optical applications, has eluded researchers so far. Here, we ...