In this work we obtain a reduction of the vectorial Ribaucour transformation that preserves the class of submanifolds with constant sectional curvature of space forms. As a consequence, a process is derived to generate a new family of such submanifolds starting from a given one. We prove a decomposition theorem for this transformation, from which the classical permutability theorem for the Ribaucour transformation of submanifolds with constant sectional curvature follows. Given k scalar Ribaucour transforms of a submanifold with constant sectional curvature, we prove the existence of a Bianchi k-cube all of whose vertices are submanifolds with the same constant sectional curvature, each of which is given by means of explicit algebra...
Abstract In a previous paper, we determined the possi-ble pointwise symmetry groups of sectional cur...
以把调和态射看作等距浸入的单位法投影的问题为背景,研究了具有共形第二基本形式的子流形,论证了具有共形第二基本形式的高维子流形,一般不是由极小点和全脐点构成.这和曲面的情形形成了鲜明的对照.也给出了常曲...
In this talk we consider two classes of submanifolds in Euclidean spaces that are characterized by s...
We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with ...
In this paper we develop the vectorial Ribaucour transformation for Euclidean submanifolds. We prove...
We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with ...
AbstractWe discuss the Ribaucour transformation of Legendre (contact) maps in its natural context: L...
A teoria da transformação de Ribaucour para hipersuperfícies em formas espaciais é apresentada. É mo...
The Ribaucour transformation classically relates surfaces via a sphere congruence that preserves lin...
Caracterizamos uma transformacão de Ribaucour de uma hipersuperfície na esfera ou no espaço hiperbó...
O objetivo desta dissertaÃÃo à apresentar uma demonstraÃÃo para uma desigualdade pontual, denominada...
通过对常曲率空间中Ricci曲率平行子流形的研究,得到一个重要定理.该定理反映了Ricci曲率平行的子流形的第二基本形式矩阵之间的关系,蕴含了Ricci曲率平行子流形的内在特征.把它运用于超曲面,通过...
A teoria das transforma»ções de superfícies de curvatura constante começou, no fim do século XIX, co...
Neste trabalho faremos um estudo acerca de Transformações de Ribaucour e usaremos a definição propos...
AbstractLagrangian submanifolds appear naturally in the context of classical mechanics. They play im...
Abstract In a previous paper, we determined the possi-ble pointwise symmetry groups of sectional cur...
以把调和态射看作等距浸入的单位法投影的问题为背景,研究了具有共形第二基本形式的子流形,论证了具有共形第二基本形式的高维子流形,一般不是由极小点和全脐点构成.这和曲面的情形形成了鲜明的对照.也给出了常曲...
In this talk we consider two classes of submanifolds in Euclidean spaces that are characterized by s...
We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with ...
In this paper we develop the vectorial Ribaucour transformation for Euclidean submanifolds. We prove...
We present a revised definition of a Ribaucour transformation for submanifolds of space forms, with ...
AbstractWe discuss the Ribaucour transformation of Legendre (contact) maps in its natural context: L...
A teoria da transformação de Ribaucour para hipersuperfícies em formas espaciais é apresentada. É mo...
The Ribaucour transformation classically relates surfaces via a sphere congruence that preserves lin...
Caracterizamos uma transformacão de Ribaucour de uma hipersuperfície na esfera ou no espaço hiperbó...
O objetivo desta dissertaÃÃo à apresentar uma demonstraÃÃo para uma desigualdade pontual, denominada...
通过对常曲率空间中Ricci曲率平行子流形的研究,得到一个重要定理.该定理反映了Ricci曲率平行的子流形的第二基本形式矩阵之间的关系,蕴含了Ricci曲率平行子流形的内在特征.把它运用于超曲面,通过...
A teoria das transforma»ções de superfícies de curvatura constante começou, no fim do século XIX, co...
Neste trabalho faremos um estudo acerca de Transformações de Ribaucour e usaremos a definição propos...
AbstractLagrangian submanifolds appear naturally in the context of classical mechanics. They play im...
Abstract In a previous paper, we determined the possi-ble pointwise symmetry groups of sectional cur...
以把调和态射看作等距浸入的单位法投影的问题为背景,研究了具有共形第二基本形式的子流形,论证了具有共形第二基本形式的高维子流形,一般不是由极小点和全脐点构成.这和曲面的情形形成了鲜明的对照.也给出了常曲...
In this talk we consider two classes of submanifolds in Euclidean spaces that are characterized by s...