The Knowledge Discovery in Databases (KDD) techniques have grown from the need for obtain more information about the data stored by organizations, such as, enterprise companies and research institutes. Bayesian Networks (BNs) can be considered as a probabilistic reasoning based model to represent knowledge and are very adequate to KDD tasks. In the last years, Bayesian Networks (BNs) have been applied in many supervised and unsupervised learning successful applications. The process to induce BNs and Bayesian Classifiers (BCs) from data tries do identify a BN (or a BC) able to represent the relationship among the variables of a certain data set. However, this is a NP-complete problem and, thus, its search space may become very large in most...
The objective of this work is to introduce two algorithms for supervised Bayesian network incrementa...
0 problema de classificação em reconhecimento de padrões pode ser interpretado como um problema de e...
AbstractThis paper provides algorithms that use an information-theoretic analysis to learn Bayesian ...
As técnicas de Descoberta de Conhecimento em Bancos de Dados (KDD), também chamadas de Mineração de ...
This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing th...
Este trabalho é uma investigação sobre o comportamento das Redes Bayesianas (RB) discretas que visam...
One of the most recent knowledge representations under uncertainty are Bayesian Networks whose main ...
One of the most recent knowledge representations under uncertainty are Bayesian Networks whose main ...
En las últimas décadas, el aprendizaje automático ha adquirido importancia como una de las herramien...
Automation at data management and analysis has been a crucial factor for companies which need effici...
This work investigates the profiles of undergraduate students at the University of Federal Universit...
There are two categories of well-known approach (as basic principle of classification process) for l...
The structure of a Bayesian network (BN) encodes variable independence. Learning the structure of a ...
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós...
Faster feature selection algorithms become a necessity as Big Data dictates the zeitgeist. An import...
The objective of this work is to introduce two algorithms for supervised Bayesian network incrementa...
0 problema de classificação em reconhecimento de padrões pode ser interpretado como um problema de e...
AbstractThis paper provides algorithms that use an information-theoretic analysis to learn Bayesian ...
As técnicas de Descoberta de Conhecimento em Bancos de Dados (KDD), também chamadas de Mineração de ...
This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing th...
Este trabalho é uma investigação sobre o comportamento das Redes Bayesianas (RB) discretas que visam...
One of the most recent knowledge representations under uncertainty are Bayesian Networks whose main ...
One of the most recent knowledge representations under uncertainty are Bayesian Networks whose main ...
En las últimas décadas, el aprendizaje automático ha adquirido importancia como una de las herramien...
Automation at data management and analysis has been a crucial factor for companies which need effici...
This work investigates the profiles of undergraduate students at the University of Federal Universit...
There are two categories of well-known approach (as basic principle of classification process) for l...
The structure of a Bayesian network (BN) encodes variable independence. Learning the structure of a ...
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós...
Faster feature selection algorithms become a necessity as Big Data dictates the zeitgeist. An import...
The objective of this work is to introduce two algorithms for supervised Bayesian network incrementa...
0 problema de classificação em reconhecimento de padrões pode ser interpretado como um problema de e...
AbstractThis paper provides algorithms that use an information-theoretic analysis to learn Bayesian ...