This thesis is concerned with the modeling and numerical study of nonsmooth dynamical systems (NSDS). The first part of the thesis deals with the modeling of some DC-DC power converters using the complementarity formalism. This mathematical theoretical framework allows us to ensure existence and uniqueness of solutions in a "natural" and synthetic way. Specifically, it works pretty well in power electronic converters because it incorporates generalized discontinuous conduction modes (GDCM), characterized by a reduction of the dimension of the effective dynamics. For systems with a single diode, analytical state-space conditions for the presence of a GDCM are stated and simulation results, showing a variety of behaviours, such as persistent ...