LIDAR (LIght Detection And Ranging) data are a primary data source for digital terrain model (DTM) generation and 3D city models. This paper presents a three-stage framework for a robust automatic classification of raw LIDAR data as buildings, ground and vegetation, followed by a reconstruction of 3D models of the buildings. In the first stage the raw data are filtered and interpolated over a grid. In the second stage, first a double raw data segmentation is performed and then geometric and topological relationships among regions resulting from segmentation are computed and stored in a knowledge base. In the third stage, a rule-based scheme is applied for the classification of the regions. Finally, polyhedral building models are reconstruct...