This study examines Latent Semantic indexing (LSI) using Singular Value Decomposition (SVD) in the knowledge retrieval process, namely indexing Indonesian text. There are three stages in this process: (1) text processing, which consists of tokenisation, filtering, and stemming process, (2) developing LSI using SVD and (3) evaluating and measuring performance. The result showed Mean Average Precision around 77.90% on scenario matrix dimension 120 and average precision for first retrieval around 83.33% on scenario matrix dimension 90
ABSTRAKSI: Mendapatkan hubungan semantik antara kata-kata dalam sebuah representasi dokumen merupaka...
Abstract — LSI is a powerful, generic practice which is able to index any document collection. It ca...
Abstract—LSI usually is conducted by using the singular value decomposition (SVD). The main difficul...
Textual documents have been largely available digitally or electronically with increasing number sin...
Ketika mendapat temuan atau laporan dugaan kasus pelanggaran pemilu, pengawas pemilu akan melakukan ...
ABSTRAKSI: klasifikasi merupakan salah satu teknik data mining dan juga text mining yang digunakan d...
In this paper we present a theoretical model for understanding the performance of Latent Semantic In...
[[abstract]]Latent Semantic Indexing (LSI) is a retrieval technique that employs Singular Value Deco...
A library in STMIK Bumigora as support unit in educational institution. It is provided to support te...
Semakin pesatnya penggunaan Internet memacu pertumbuhan ketersediaan suatu informasi (berita), yang ...
Document categorization is a widely researched area of information retrieval. A popular approach to ...
KATEGORISASI DAN RETRIVAL DOKUMEN TEKS DENGAN PENDEKATAN LATENT SEMANTIC INDEXING TERMODIFIKASI - ka...
Document categorization is a widely researched area of information retrieval. A research on Malay na...
ABSTRAK Seiring bertambahnya jumlah dokumen yang disimpan dalam database maka semakin sulit bagi use...
Text retrieval using Latent Semantic Indexing (LSI) with truncated Singular Value Decomposition (SVD...
ABSTRAKSI: Mendapatkan hubungan semantik antara kata-kata dalam sebuah representasi dokumen merupaka...
Abstract — LSI is a powerful, generic practice which is able to index any document collection. It ca...
Abstract—LSI usually is conducted by using the singular value decomposition (SVD). The main difficul...
Textual documents have been largely available digitally or electronically with increasing number sin...
Ketika mendapat temuan atau laporan dugaan kasus pelanggaran pemilu, pengawas pemilu akan melakukan ...
ABSTRAKSI: klasifikasi merupakan salah satu teknik data mining dan juga text mining yang digunakan d...
In this paper we present a theoretical model for understanding the performance of Latent Semantic In...
[[abstract]]Latent Semantic Indexing (LSI) is a retrieval technique that employs Singular Value Deco...
A library in STMIK Bumigora as support unit in educational institution. It is provided to support te...
Semakin pesatnya penggunaan Internet memacu pertumbuhan ketersediaan suatu informasi (berita), yang ...
Document categorization is a widely researched area of information retrieval. A popular approach to ...
KATEGORISASI DAN RETRIVAL DOKUMEN TEKS DENGAN PENDEKATAN LATENT SEMANTIC INDEXING TERMODIFIKASI - ka...
Document categorization is a widely researched area of information retrieval. A research on Malay na...
ABSTRAK Seiring bertambahnya jumlah dokumen yang disimpan dalam database maka semakin sulit bagi use...
Text retrieval using Latent Semantic Indexing (LSI) with truncated Singular Value Decomposition (SVD...
ABSTRAKSI: Mendapatkan hubungan semantik antara kata-kata dalam sebuah representasi dokumen merupaka...
Abstract — LSI is a powerful, generic practice which is able to index any document collection. It ca...
Abstract—LSI usually is conducted by using the singular value decomposition (SVD). The main difficul...