In this work, we aim to present a hybrid numerical scheme based on the homotopy analysis transform method (HATM) to examine the fractional model of nonlinear wave-like equations having variable coefficients, which narrate the evolution of stochastic systems. The wave-like equation models the erratic motions of small particles that are dipped in fluids and fluctuations of the stochastic behavior of exchange rates. The uniqueness and existence of HATM solution have also been discussed. Some numerical examples are given to establish the accurateness and effectiveness of the suggested scheme. Furthermore, we show that the proposed computational approach can give much better approximation than perturbation and Adomain decomposition method, which...
Purpose - This paper aims to present a general framework of the homotopy perturbation method (HPM) f...
In this study, the homotopy perturbation transform method (HPTM) is performed to give approximate an...
Through the use of a unique approach, we study the fractional Biswas–Milovic model with Kerr and par...
Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully co...
In this paper, we present a numerical algorithm based on new homotopy perturbation transform method ...
The aim of this article is to introduce a modified analytical approach to obtain quick and accurate ...
The main aim of the present paper was to present a user friendly approach based on homotopy analysis...
AbstractThe main aim of the present paper was to present a user friendly approach based on homotopy ...
The symmetry design of the system contains integer partial differential equations and fractional-ord...
The purpose of this paper is to propose a modified and simple algorithm for fractional modelling ari...
This Letter applies the modified He's homotopy perturbation method (HPM) suggested by Momani and Odi...
AbstractThe purpose of this study is to introduce a new analytical method namely, fractional homotop...
The idea proposed in this work is to extend the ZZ transform method to resolve the nonlinear fractio...
The purpose of this study is to introduce a new analytical method namely, fractional homotopy analys...
WOS: 000287938600018This paper applies the homotopy analysis method (HAM) to obtain analytical solut...
Purpose - This paper aims to present a general framework of the homotopy perturbation method (HPM) f...
In this study, the homotopy perturbation transform method (HPTM) is performed to give approximate an...
Through the use of a unique approach, we study the fractional Biswas–Milovic model with Kerr and par...
Using the recently proposed homotopy perturbation Shehu transform method (HPSTM), we successfully co...
In this paper, we present a numerical algorithm based on new homotopy perturbation transform method ...
The aim of this article is to introduce a modified analytical approach to obtain quick and accurate ...
The main aim of the present paper was to present a user friendly approach based on homotopy analysis...
AbstractThe main aim of the present paper was to present a user friendly approach based on homotopy ...
The symmetry design of the system contains integer partial differential equations and fractional-ord...
The purpose of this paper is to propose a modified and simple algorithm for fractional modelling ari...
This Letter applies the modified He's homotopy perturbation method (HPM) suggested by Momani and Odi...
AbstractThe purpose of this study is to introduce a new analytical method namely, fractional homotop...
The idea proposed in this work is to extend the ZZ transform method to resolve the nonlinear fractio...
The purpose of this study is to introduce a new analytical method namely, fractional homotopy analys...
WOS: 000287938600018This paper applies the homotopy analysis method (HAM) to obtain analytical solut...
Purpose - This paper aims to present a general framework of the homotopy perturbation method (HPM) f...
In this study, the homotopy perturbation transform method (HPTM) is performed to give approximate an...
Through the use of a unique approach, we study the fractional Biswas–Milovic model with Kerr and par...