We discuss linear system solvers invoking a messenger-field and compare them with (preconditioned) conjugate gradient approaches. We show that the messenger-field techniques correspond to fixed point iterations of an appropriately preconditioned initial system of linear equations. We then argue that a conjugate gradient solver applied to the same preconditioned system, or equivalently a preconditioned conjugate gradient solver using the same preconditioner and applied to the original system, will in general ensure at least a comparable and typically better performance in terms of the number of iterations to convergence and time-to-solution. We illustrate our conclusions with two common examples drawn from the cosmic microwave background (CM...