This study is concerned with analysis of fatigue crack growth and life-time prediction for aviation GTE compressor disk under operation conditions. For consideration were different combinations of rotational speed, temperature, surface flaw form and sizes as well as elastic-plastic titanium alloy BT3-1 properties are employed. A crack growth rate equation is derived involving the fracture process zone size and nonlinear stress intensity factor. The assessments of the structural integrity of the rotating disk are compared for elastic and elastic-plastic solutions. It is stated that the traditional elastic crack growth models overestimate the residual fatigue lifetime with respect to the nonlinear fracture mechanics approach