We consider the unitary dynamics of interacting fermions in the lowest Landau level, on spherical and toroidal geometries. The dynamics are driven by the interaction Hamiltonian which, viewed in the basis of single-particle Landau orbitals, contains correlated pair hopping terms in addition to static repulsion. This setting and this type of Hamiltonian has a significant history in numerical studies of fractional quantum Hall (FQH) physics, but the many-body quantum dynamics generated by such correlated hopping has not been explored in detail. We focus on initial states containing all the fermions in one block of orbitals. We characterize in detail how the fermionic liquid spreads out starting from such a state. We identify and explain diffe...