In Computer Vision, finding simple features is performed using classifiers called interest point (IP) detectors, which are often utilised to track features as the scene changes. For 2D based classifiers it has been intuitive to measure repeated point reliability using 2D metrics given the difficulty to establish ground truth beyond 2D. The aim is to bridge the gap between 2D classifiers and 3D environments, and improve performance analysis of 2D IP classification on 3D objects. This paper builds on existing work with 3D scanned and artificial models to test conventional 2D feature detectors with the assistance of virtualised 3D scenes. Virtual space depth is leveraged in tests to perform pre-selection of closest repeatable points in both 2D...