Orientador: Lucas Catão de Freitas FerreiraDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação CientíficaResumo: Nesta dissertação, estudamos o problema de existência de soluções globais suaves para a equação quase-geostrófica em R2 (2DQG) com condições periódicas e no caso de valor crítico para a viscosidade fracionária. Esta equação aparece em estudos de alguns fluidos geofísicos que apresentam altas velocidades de rotação. De um ponto de vista dimensional, a equação é considerada um análogo em 2D das equações de Navier-Stokes em 3D. Primeiramente, estudamos a teoria de soluções fracas com dados iniciais em L2 via o método de Galerkin. Depois mostramos um princípio do máximo em espa...
In this paper we prove global well-posedness of the critical surface quasigeostrophic equation on t...
AbstractIn this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and...
In this paper, we show the existence of the first non trivial family of classical global solutions o...
Nesta dissertação, estudamos o problema de existência de soluções globais suaves para a equação quas...
AbstractWe study the two-dimensional quasi-geostrophic equations (2D QG) in Sobolev spaces. We first...
This paper deals with the numerical simulations of the 2D generalized quasi geostrophic equation, wh...
AbstractIn this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and...
This is the published version, also available here: http://ejde.math.txstate.edu/
This is the published version, also available here: http://ejde.math.txstate.edu/
In this article, we prove that if the initial data $heta_0$ and its Riesz transforms ($mathcal{R}_1...
Wu We seek solutions of the initial value problem for the 2D dissipative quasi-geostrophic (QG) equa...
We seek solutions of the initial value problem for the 2D dissipative quasi-geostrophic (QG) equatio...
In this work, we discuss the well-posedness of the initial value problem for the dissipative quasi-g...
Abstract. We give an elementary proof of the global well-posedness for the critical 2D dissipative q...
Abstract. The two-dimensional (2D) quasi-geostrophic (QG) equation is a 2D model of the 3D incompres...
In this paper we prove global well-posedness of the critical surface quasigeostrophic equation on t...
AbstractIn this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and...
In this paper, we show the existence of the first non trivial family of classical global solutions o...
Nesta dissertação, estudamos o problema de existência de soluções globais suaves para a equação quas...
AbstractWe study the two-dimensional quasi-geostrophic equations (2D QG) in Sobolev spaces. We first...
This paper deals with the numerical simulations of the 2D generalized quasi geostrophic equation, wh...
AbstractIn this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and...
This is the published version, also available here: http://ejde.math.txstate.edu/
This is the published version, also available here: http://ejde.math.txstate.edu/
In this article, we prove that if the initial data $heta_0$ and its Riesz transforms ($mathcal{R}_1...
Wu We seek solutions of the initial value problem for the 2D dissipative quasi-geostrophic (QG) equa...
We seek solutions of the initial value problem for the 2D dissipative quasi-geostrophic (QG) equatio...
In this work, we discuss the well-posedness of the initial value problem for the dissipative quasi-g...
Abstract. We give an elementary proof of the global well-posedness for the critical 2D dissipative q...
Abstract. The two-dimensional (2D) quasi-geostrophic (QG) equation is a 2D model of the 3D incompres...
In this paper we prove global well-posedness of the critical surface quasigeostrophic equation on t...
AbstractIn this article we apply the method used in the recent elegant proof by Kiselev, Nazarov and...
In this paper, we show the existence of the first non trivial family of classical global solutions o...