Orientador: José Plínio de Oliveira SantosTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação CientíficaResumo: Neste trabalho, colaboramos com provas combinatórias que utilizam a contagem e a q-contagem de elementos em conjuntos de ladrilhamentos com restrições. Na primeira parte do trabalho utilizamos os ladrilhamentos para demonstrar algumas identidades da teoria das partições, dentre elas, o Teorema dos Números Triangulares e o Teorema q-análogo da Série q-Binomial. Na segunda parte do trabalho apresentamos interpretações combinatórias, via ladrilhamento, para algumas identidades envolvendo os números de Jacobsthal e os números generalizados de Jacobsthal . Na terceira parte do trabalh...
We present different combinatorial interpretations of Lucas and Gibonacci numbers. Using these inter...
Neste trabalho, exploramos os números de Fibonacci e de Lucas. A maioria dos resultados históricos s...
AbstractIn 1840, V.A. Lebesgue proved the following two series-product identities:∑n⩾0(−1;q)n(q)nq(n...
Neste trabalho, colaboramos com provas combinatórias que utilizam a contagem e a q-contagem de eleme...
Orientador: José Plínio de Oliveira SantosTese (doutorado) - Universidade Estadual de Campinas, Ins...
Neste trabalho apresentamos novas interpretações combinatórias para sequências que incluem os número...
Neste trabalho, colaboramos com o desenvolvimento das técnicas combinatórias que utilizam a q-contag...
Neste trabalho, colaboramos com o desenvolvimento das técnicas combinatórias que utilizam a q-contag...
Neste trabalho, colaboramos com o desenvolvimento das técnicas combinatórias que utilizam a q-contag...
Orientador: Prof. Dr. Luiz Antonio Ribeiro de SantanaDissertação (mestrado) - Universidade Federal d...
Neste trabalho 5 conjeturas relacionadas com versões finitas das identidades do tipo Rogers-Ramanuja...
In this paper we present combinatorial interpretations and polynomials generalizations for sequences...
We provide elementary combinatorial proofs of several Fibonacci and Lucas number identities left ope...
We present different combinatorial interpretations of Lucas and Gibonacci numbers. Using these inter...
In Proofs that Really Count [2], Benjamin and Quinn have used “square and domino tiling” interpreta...
We present different combinatorial interpretations of Lucas and Gibonacci numbers. Using these inter...
Neste trabalho, exploramos os números de Fibonacci e de Lucas. A maioria dos resultados históricos s...
AbstractIn 1840, V.A. Lebesgue proved the following two series-product identities:∑n⩾0(−1;q)n(q)nq(n...
Neste trabalho, colaboramos com provas combinatórias que utilizam a contagem e a q-contagem de eleme...
Orientador: José Plínio de Oliveira SantosTese (doutorado) - Universidade Estadual de Campinas, Ins...
Neste trabalho apresentamos novas interpretações combinatórias para sequências que incluem os número...
Neste trabalho, colaboramos com o desenvolvimento das técnicas combinatórias que utilizam a q-contag...
Neste trabalho, colaboramos com o desenvolvimento das técnicas combinatórias que utilizam a q-contag...
Neste trabalho, colaboramos com o desenvolvimento das técnicas combinatórias que utilizam a q-contag...
Orientador: Prof. Dr. Luiz Antonio Ribeiro de SantanaDissertação (mestrado) - Universidade Federal d...
Neste trabalho 5 conjeturas relacionadas com versões finitas das identidades do tipo Rogers-Ramanuja...
In this paper we present combinatorial interpretations and polynomials generalizations for sequences...
We provide elementary combinatorial proofs of several Fibonacci and Lucas number identities left ope...
We present different combinatorial interpretations of Lucas and Gibonacci numbers. Using these inter...
In Proofs that Really Count [2], Benjamin and Quinn have used “square and domino tiling” interpreta...
We present different combinatorial interpretations of Lucas and Gibonacci numbers. Using these inter...
Neste trabalho, exploramos os números de Fibonacci e de Lucas. A maioria dos resultados históricos s...
AbstractIn 1840, V.A. Lebesgue proved the following two series-product identities:∑n⩾0(−1;q)n(q)nq(n...