CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOIn this contribution, the relationship between saddle points of Lagrangian functions associated with the inequality constrained multiobjective optimization problem and Fritz John critical points are presented under generalized notions of convexity. Assuming invexity and an extended Slater-type condition upon the multiobjective problem, a regular solution to the Fritz-John system is obtained that encompasses all the objective functions. Also, a new class of generalized convex problems is defined, and its connections with other existing classes are established.In this contribution, the relationship between saddle po...
One of the aim of this paper is to introduce new classes of vector generalized concave functions and...
URL des Cahiers : <br />http://mse.univ-paris1.fr/MSEFramCahier2006.htmCahiers de la Maison des Scie...
URL des Cahiers : http://mse.univ-paris1.fr/MSEFramCahier2006.htmCahiers de la Maison des Sciences E...
This article deals with a vector optimization problem with cone constraints in a Banach space settin...
AbstractWe consider the problem of minimizing a function over a region defined by an arbitrary set, ...
This book presents state-of-the-art results and methodologies in modern global optimization, and has...
This thesis contains several contributions to the theory of optimality conditions in single- and mul...
In this paper, we consider the Abadie and the Basic constraint qualifications (CQ) for lower level ...
In this paper, by means of a theorem of the alternative for generalized systems, weak alternative is...
We consider convex constrained optimization problems, and we enhance the classical Fritz John optima...
AbstractNecessary and sufficient conditions without a constraint qualification for ϵ-Pareto optimali...
Rapporteur : R. Henrion, Weierstrass-Institut (Berlin) Directeur de thèse : A. Jourani , Université ...
Rapporteur : R. Henrion, Weierstrass-Institut (Berlin) Directeur de thèse : A. Jourani , Université ...
AbstractIn this paper we have obtained Fritz-John type necessary optimality criteria for non-linear ...
AbstractFor the scalar programming problem, some characterizations for optimal solutions are known. ...
One of the aim of this paper is to introduce new classes of vector generalized concave functions and...
URL des Cahiers : <br />http://mse.univ-paris1.fr/MSEFramCahier2006.htmCahiers de la Maison des Scie...
URL des Cahiers : http://mse.univ-paris1.fr/MSEFramCahier2006.htmCahiers de la Maison des Sciences E...
This article deals with a vector optimization problem with cone constraints in a Banach space settin...
AbstractWe consider the problem of minimizing a function over a region defined by an arbitrary set, ...
This book presents state-of-the-art results and methodologies in modern global optimization, and has...
This thesis contains several contributions to the theory of optimality conditions in single- and mul...
In this paper, we consider the Abadie and the Basic constraint qualifications (CQ) for lower level ...
In this paper, by means of a theorem of the alternative for generalized systems, weak alternative is...
We consider convex constrained optimization problems, and we enhance the classical Fritz John optima...
AbstractNecessary and sufficient conditions without a constraint qualification for ϵ-Pareto optimali...
Rapporteur : R. Henrion, Weierstrass-Institut (Berlin) Directeur de thèse : A. Jourani , Université ...
Rapporteur : R. Henrion, Weierstrass-Institut (Berlin) Directeur de thèse : A. Jourani , Université ...
AbstractIn this paper we have obtained Fritz-John type necessary optimality criteria for non-linear ...
AbstractFor the scalar programming problem, some characterizations for optimal solutions are known. ...
One of the aim of this paper is to introduce new classes of vector generalized concave functions and...
URL des Cahiers : <br />http://mse.univ-paris1.fr/MSEFramCahier2006.htmCahiers de la Maison des Scie...
URL des Cahiers : http://mse.univ-paris1.fr/MSEFramCahier2006.htmCahiers de la Maison des Sciences E...